
1 of 7 082102

Introduction
The DS1267, DS1867, and DS1868 are digital potentiometers that use a unique 3-wire protocol that can be
difficult to interface with a PC. This application note provides a simple hardware/software solution to
generate a PC interface to adjust the potentiometer settings and example C++ algorithms to read and write to
these devices. The software shown in Figure 1 and its source code are available on Dallas Semiconductor’s
FTP site.

Figure 1. Dallas Semiconductor’s 3-Wire Evaluation Software (DS3Wire.exe)

Hardware
The hardware generated for this application utilizes a DS3900 to communicate with the ICs. The DS3900 is
a module that has a MAX3223 RS232 transceiver and a microprocessor. The transceiver allows the
module’s microprocessor to communicate with a PC and the microprocessor implements a command
structure to allow a PC to read or write any I/O pin on the module. In addition to the DS3900 and the 3-wire
IC, decoupling capacitors should be used to reduce the noise on VCC caused by the DS3900 and the
potentiometer’s digital interface. Figure 2 shows the connections required to communicate to a 3-wire device
using a DS3900 and the DS3Wire application.

Figure 2. Schematic for DS3Wire Application

www.maxim-ic.com

Application Note 213
Using a PC with a DS3900 to
Communicate with DS1267s,

DS1867s, and DS1868s

www.maxim-ic.com

AN213

2 of 7

Software
The software shown in Figure 1 has three primary routines; initialization of the DS3900 and the dialog box
(OnInitDialog), reading the 17-bit register (OnRead), and writing the 17-bit register (OnWrite). These
routines are implemented using a C++ class called “CdsPic.” CdsPic contains subroutines that allow
prewritten and tested RS232/DS3900 code to be used to create the 3-wire algorithm. The instance of the
CdsPic class in the DS3Wire application is called “DS3900.” The CdsPic class and the RS232 functions are
available on Dallas’s FTP site for anyone who may be interested. For those not interested in the specifics of
the DS3900 implementation, the function names are generic enough to be viewed as pseudo-code. A few
example function names and their descriptions are listed in Table 1 for reference.

Table 1. CdsPic Member Function Examples
Example Description

DS3900.BoardPresent() Returns TRUE if the DS3900 is detected during the CdsPic class initialization
code, returns FALSE if the DS3900 is not detected.

DS3900.Write1(true) Pin P1 is set to an output and forces its high level. Returns TRUE if no errors are
detected during communications.

DS3900.Write1(false) Pin P1 is set to an output and forces its low level. Returns TRUE if no errors are
detected during communications.

DS3900.Read1(state) Pin P1 is set to an input, read, and P1’s input level is returned to a Boolean
variable “state.” Returns TRUE if no errors are detected during communications.

DS3900.Read4(state) Pin P4 is set to an input, read, and P4’s input level is returned to a Boolean
variable “state.” Returns TRUE if no errors are detected during communications.

3-Wire Basics
This particular version of the 3-wire interface is easiest to understand if it is viewed as a 17-bit shift register
with two control signals, clock (CLK) and shift enable (RST), and two data signals, data in (DQ) and data
out (COUT). When RST is high, the interface is not in reset; therefore, the shift register is enabled. Any
positive edge on CLK received while RST is high will cause the shift register to shift all of the data one
position, moving DQ’s present value into the 1st position. This shift will also change the value of COUT, which
always displays the current value of the 17th bit in the register. Once all 17-bits of data are shifted into the
device, the reset signal is brought low, which will transfer the new settings to the registers that control the
potentiometer’s position and disable the 3-wire interface.

The COUT pin was designed to provide the ability to cascade multiple 3-wire devices together on the same
3-wire bus, but it does provide read access to the shift register. A read is performed by enabling the interface
(setting RST high) and clocking the 17-bits in the shift register to COUT where they can be read one bit at a
time. When RST is deactivated, the values in the shift register will be the values written to the device by DQ
during the read cycle because data is being shifted into the device as it is being shifted out. This requires DQ
to be rewritten to the current value of COUT before each clock pulse is initiated or the read operation will be
destructive. A destructive read operation will cause the potentiometer to change position when RST is
deactivated.

This interface has two primary problems to avoid:
1) Partial writes (shifting less than 17 bits) will produce shift register garbage that is a product of the

previous data and the new data. Thus, it is not possible to change one resistor’s value without writing all
17-bits.

2) A read function is destructive unless the data shifted out of the shift register is rotated back into the shift
register.

AN213

3 of 7

The first issue is easily addressed, do not perform partial writes. The second issue can be addressed two
different ways. The data sheet shows using a feedback resistor (10k�) that will automatically write the value
of COUT to DQ unless DQ is being driven by an output during a write cycle. Although this can be
implemented with a DS3900, the design was implemented with COUT driving a separate input pin. This
demonstrates how to implement the interface when a feedback resistor cannot be used. The microprocessor,
or DS3900 in this instance, will have to perform the feedback resistor’s function in firmware/software. When
a value is read on COUT, it will be written to DQ before the 3-wire device is clocked.

The most common case when the feedback resistor cannot be used is when a 3-wire device is interfaced to an
open-collector I/O port. The open-collector I/O pins will have a pull-up resistor to output a high voltage level.
This resistor will be in contention with the feedback resistor. If the feedback resistor is smaller than the pull-
up, COUT will always be written into DQ, including during write cycles when the intent is to write new value
to the device. If the feedback resistor is larger than the pull-up, DQ will always be high during reads.

OnInitDialog
OnInitDialog is the function called by Windows to initialize the dialog box. If Microsoft Developer Studio is
used to generate the dialog box, one of the dialog box construction options leaves comments for the
programmer in the code. This will leave a “TODO” comment at the end of this function stating to place extra
initialization code here.

The following code was added in this instance to ensure the DS3900 powered up correctly, set both CLK and
RST low, and to initialize the edit boxes with the potentiometer’s current position. If the DS3900 is not
detected, an error message will inform the user.

Figure 3. Extra Initialization Code added to OnInitDialog Function
// TODO: Add extra initialization here <-Developer Studio Comments

if(DS3900.BoardPresent()) // <- BoardPresent() checks for DS3900
{ // <-If found path

m_sEDIT_Status= "DS3900 Found!"; // new status message, all systems go
DS3900.Write1(false); // initialize clock
DS3900.Write2(false); // initialize reset
OnRead(); // read pots and update edit boxes

}
else
{ // <-If not found path

m_sEDIT_Status = "DS3900 not found!@#$"; // new status message, error detect
UpdateData(FALSE); // Update Dialog Values
MessageBox("DS3900 Not Found\nCheck Power and Serial Cable\nRestart

Applicaion","DS3900 Error");
}

OnRead
The OnRead function reads the 17-bit shift register. It is executed when the read button is pressed and during
OnInitDialog. The algorithm assumes the COUT pin is connected to a separate DS3900 input as shown in
Figure 2. This requires the software to write the value read on COUT to DQ before the 3-wire device is clocked
or the potentiometers will be adjusted unintentionally during read operations. Figure 4 shows the algorithm
used by the application. In addition to reading the 17-bits, it reconstructs the data into variables representing
Pot0, Pot1, and the stack select bit, and it updates the dialog box with the UpdateData(FALSE) function.
Each transmission to the DS3900 from the PC is monitored for errors, and any disturbance to the
communication will result in the termination of the transaction and an error message. If no errors occur, a
“Read Successful” message is written to the status box. This function takes approximately 95ms to execute,
although results may vary depending on the speed of the PC used.

AN213

4 of 7

Figure 4. OnRead Function
void OnRead()
{

//Variables used by subroutine
int success;
bool bit;
unsigned char mask=0x80;
unsigned char pot0=0;
unsigned char pot1=0;

if(DS3900.BoardPresent()) // Only Read if DS3900 found
{

success = DS3900.Write2(true); // Pull reset high
if(success) // Abort Read if comm fail.
{

success += DS3900.Read5(bit); // Read Cout (stack bit first)
success += DS3900.Write4(bit); // Copy Read Contents to DQ
success += DS3900.Write1(true); // Clock bit
success += DS3900.Write1(false); // Clock bit
m_RADIO_Stack = bit; // <-Update Dialog Box Variable
if(success == 5) // Abort Read if comm fail.
{

for(int x = 0; x <8 ; x++) // Pot 1 Read Loop
{

success += DS3900.Read5(bit); // Read Cout (stack bit first)
success += DS3900.Write4(bit); // Copy Read Contents to DQ
success += DS3900.Write1(true); // Clock bit
success += DS3900.Write1(false); // Clock bit
if(bit) // If bit set, set bit in Pot variable

pot1 |= mask;
mask = mask >> 1; // Adjust Mask for next pass

}
m_ucEDIT_Pot1 = pot1; // <-Update Dialog Box Variable
mask=0x80; // Reset Mask
for(int y = 0; y <8 ; y++) // Pot 0 Read Loop
{

success += DS3900.Read5(bit); // Read Cout (stack bit first)
success += DS3900.Write4(bit); // Copy Read Contents to DQ
success += DS3900.Write1(true); // Clock bit
success += DS3900.Write1(false); // Clock bit
if(bit) // If bit set, set bit in Pot variable

pot0 |= mask;
mask = mask >> 1; // Adjust Mask for next pass

}
m_ucEDIT_Pot0 = pot0; // <-Update Dialog Box Variable

}
}
success += DS3900.Write2(false); // Pull reset low
if(success == 70) // Determine if comm has failed

m_sEDIT_Status = "Successful Read"; // Success Message
else

m_sEDIT_Status = "Read Failed"; // Fail Message
}
UpdateData(FALSE); // <-Triggers Dialog Box Update

}

Notice the last if statement of the read algorithm updates the status message of the dialog box. This will
overwrite the “DS3900 Found!” message of the initialization with “Successful Read” before the dialog box is
displayed if the DS3900 is initialized successfully.

AN213

5 of 7

OnWrite
The OnWrite function reads the values typed into the dialog box by the user and writes them to the 3-wire
device. To read the dialog box values, the UpdateData(TRUE) function is called. In addition to reading the
data, UpdateData(TRUE) converts the ASCII strings to unsigned characters for the potentiometer registers,
and to an integer value for the stack select bit’s radio button. These values are automatically stored in the
m_ucEDIT_Pot0, m_ucEDIT_Pot1 and m_RADIO_Stack variables. After the new desired settings are read,
the write algorithm instructs the DS3900 to send out the 17-bits of data one bit at a time.

During the write process, communications to the DS3900 are monitored for errors, and the “success” variable
keeps a running total of the number of successful data transmissions. If every read/write operation to the
DS3900 is successful, the program will update the status box so it reads “Successful Write”; else it aborts the
command and returns an error message. The function, which takes about 70ms to execute, is shown in
Figure 5.

AN213

6 of 7

Figure 5. OnWrite Function
void OnWrite()
{

UpdateData(TRUE); //Read values of Dialog Box

//variables used by subroutine
int success;
unsigned char mask = 0x80;
unsigned char pot0 = m_ucEDIT_Pot0;
unsigned char pot1 = m_ucEDIT_Pot1;
bool bit = false;

if(m_RADIO_Stack) // place stack select bit into “bit” variable.
bit = true;

if(DS3900.BoardPresent()) // Only Write if DS3900 Found
{

success = DS3900.Write2(true); // Pull reset high

if(success) // Write abortion if comm. fail
{

success += DS3900.Write4(bit); // write stack select bit
success += DS3900.Write1(true); // Clock bit
success += DS3900.Write1(false); // Clock bit

if(success == 4) // Write abortion if comm. fail
{

for(int x = 0; x <8 ; x++) // Loop for 8 bits of pot 1
{

if(pot1 & mask) // Read next DQ value with mask
success += DS3900.Write4(true);

else
success += DS3900.Write4(false);

success += DS3900.Write1(true); // Clock bit
success += DS3900.Write1(false); // Clock bit
mask = mask >> 1; // Adjust mask to next position

}

mask = 0x80; // Reset mask
for(int y = 0; y <8 ; y++) // Loop for 8 bits of pot 0
{

if(pot0 & mask) // Read next DQ value with mask
success += DS3900.Write4(true);

else
success += DS3900.Write4(false);

success += DS3900.Write1(true); // Clock bit
success += DS3900.Write1(false); // Clock bit
mask = mask >> 1; // Adjust mask to next position.

}
}

}
success += DS3900.Write2(false); // Pull reset low

}
if(success == 53) // Comm. Pass/Fail notification.

m_sEDIT_Status = "Successful Write"; // Pass Message
else

m_sEDIT_Status = "Write Failed"; // Fail Message
UpdateData(FALSE); // <-Trigger Dialog Update

}

AN213

7 of 7

Conclusion
This application note provides a simple C++ algorithm for reading and writing to the 3-wire devices
containing 17-bit shift registers using a DS3900. The write operation takes approximately 70ms, and the read
operation, which does not use the feedback resistor, takes about 95ms to execute. Although this is not fast
with respect to the 3-wire interface’s maximum data rate, it is adequate to evaluate the potentiometers. The
software shown in Figure 1 can be downloaded from Dallas Semiconductor’s FTP site at
ftp.dalsemi.com/pub/system_extension/DS3Wire.

NOTE: THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Maxim Integrated Products / Dallas Semiconductor Contact Information

Company Addresses:

Maxim Integrated Products, Inc
120 San Gabriel Drive
Sunnyvale, CA 94086
Tel: 408-737-7600
Fax: 408-737-7194

Dallas Semiconductor
4401 S. Beltwood Parkway
Dallas, TX 75244
Tel: 972-371-4448
Fax: 972-371-4799

Product Literature / Samples Requests:
(800) 998-8800

Sales and Customer Service:

World Wide Website:
www.maxim-ic.com

Product Information:
http://www.maxim-ic.com/MaximProducts/products.htm

Ordering Information:
http://www.maxim-ic.com/BuyMaxim/Sales.htm

FTP Site:
ftp://ftp.dalsemi.com

(408) 737-7600

ftp.dalsemi.com/pub/system_extension/DS3Wire
www.maxim-ic.com
http://www.maxim-ic.com/MaximProducts/products.htm
http://www.maxim-ic.com/BuyMaxim/Sales.htm
ftp://ftp.dalsemi.com

